


We can easily remove the HTML tags from the text by using regular expressions. So while extracting the data, we sometimes have the HTML tags such as header, body, paragraph, strong, and many more. Whenever we extract data from blogs articles from different sites, the data is often written in a paragraph format. Most Common Methods for Cleaning the Data You can find the GitHub link here and start practicing and get your hand on the problem. I would recommend if you haven’t read it first read it, which will help you in text cleaning.

In the first part of the series, we saw some most common techniques which we daily use while cleaning the data i.e. Name is ".This article was published as a part of the Data Science Blogathon. Python Examples Python Examples Python Compiler Python Exercises Python Quiz Python Certificate
#Format html text to clean text python how to
Python How To Remove List Duplicates Reverse a String Add Two Numbers Module Reference Random Module Requests Module Statistics Module Math Module cMath Module Python Reference Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary
#Format html text to clean text python update
Python MongoDB MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit Python MySQL MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join creating a unicode string textunicode 'Python is easy \u200c to learn' encoding the text to ASCII format textencode textunicode.encode(encoding'ascii', errors'ignore') decoding the text textdecode code() cleaning the text to remove extra whitespace cleantext ' '.join(word for word in textdecode.split()) print(cleantext) > Python is easy to learn. Machine Learning Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree Confusion Matrix Hierarchical Clustering Logistic Regression Grid Search Categorical Data K-means Bootstrap Aggregation Cross Validation AUC - ROC Curve K-nearest neighbors Python Matplotlib Matplotlib Intro Matplotlib Get Started Matplotlib Pyplot Matplotlib Plotting Matplotlib Markers Matplotlib Line Matplotlib Labels Matplotlib Grid Matplotlib Subplot Matplotlib Scatter Matplotlib Bars Matplotlib Histograms Matplotlib Pie Charts

Python Modules NumPy Tutorial Pandas Tutorial SciPy Tutorial Django Tutorial documentAssembler DocumentAssembler() \.setInputCol('text') \.setOutputCol('document') inpuColName 'document' outputColName 'normalizedDocument' action 'clean' cleanUpPatterns. Python Dictionaries Access Items Change Items Add Items Remove Items Loop Dictionaries Copy Dictionaries Nested Dictionaries Dictionary Methods Dictionary Exercise Python If.Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try.Except Python User Input Python String Formattingįile Handling Python File Handling Python Read Files Python Write/Create Files Python Delete Files
